Altered cortical glutamate receptor function in the R6/2 model of Huntington's disease.
نویسندگان
چکیده
Alterations in pyramidal neurons from the sensorimotor cortex may be responsible for some of the cognitive and motor symptoms of Huntington's disease (HD). The present experiments used R6/2 transgenic mice that express exon 1 of the human HD gene with an expanded number of CAG repeats. We characterized alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) currents and their modulation by cyclothiazide (CTZ) as well as N-methyl-D-aspartate (NMDA) currents and their Mg2+ sensitivity in acutely dissociated cortical pyramidal neurons in R6/2 transgenic and wild-type (WT) mice at 21 days (before overt symptoms), 40 days (when symptoms begin), and 80 days (fully symptomatic). AMPA currents, alone or in the presence of CTZ, were smaller in 21- and 40-day-old R6/2 groups compared with WT mice. In R6/2 mice, more neurons displayed desensitizing AMPA currents in the presence of CTZ, indicating increased expression of "flop" splice variants, whereas the majority of WT cells expressed the "flip" variants of AMPA receptor subunits. NMDA peak currents also were smaller in R6/2 pyramidal neurons at 21 days. At 40 days, NMDA currents were similar in WT and R6/2 mice but Mg2+ sensitivity was greater in R6/2 mice, resulting in smaller NMDA currents in the presence of Mg2+. Differences in AMPA and NMDA currents between WT and R6/2 cells were no longer detected at 80 days. Our findings indicate that currents induced by glutamate receptor agonists are decreased in isolated cortical pyramidal neurons from R6/2 mice and that this decrease occurs early. Altered glutamate receptor function could contribute to changes in cortical output and may underlie some of the cognitive and motor impairments in this animal model of HD.
منابع مشابه
Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation.
The pathogenesis of Huntington's disease is still not completely understood. Several lines of evidence from toxic/non-transgenic animal models of Huntington's disease suggest that excitotoxic mechanisms may contribute to the pathological phenotype. Evidence from transgenic animal models of Huntington's disease, however, is sparse. To explore potential alterations in brain glutamate handling we ...
متن کاملAge-dependent biphasic changes in ischemic sensitivity in the striatum of Huntington's disease R6/2 transgenic mice.
We used the oxygen/glucose deprivation (OGD) model of ischemia in corticostriatal brain slices to test the hypothesis that metabolic deficiencies in R6/2 transgenic Huntington's disease (HD) mice will impair their recovery from an ischemic challenge. Corticostriatal extracellular field excitatory postsynaptic potentials (fEPSPs) were evoked in transgenic and wild-type (WT) mice in three age gro...
متن کاملRelationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease.
KEY POINTS Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronize...
متن کاملA similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington's disease and in the complexin II knockout mouse.
Complexin II is reduced in Huntington's disease (HD) patients and in the R6/2 mouse model of HD. Mice lacking complexin II (Cplx2-/- mice) show selective cognitive deficits that reflect those seen in R6/2 mice. To determine whether or not there is a common mechanism that might underlie the cognitive deficits, long-term potentiation (LTP) was examined in the CA3 region of hippocampal slices from...
متن کاملInhibition of the Striatal Specific Phosphodiesterase PDE10A Ameliorates Striatal and Cortical Pathology in R6/2 Mouse Model of Huntington's Disease
BACKGROUND Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 4 شماره
صفحات -
تاریخ انتشار 2006